
Martin Dubs, images by Koji Maeda

SAG, FMA
Content

- Hard-Software
- Wavelength calibration
- Spectrum extraction, old method
- Processing pipeline with Python
- Results
- Summary
- Live demo, Python pipeline m_pipe62.py
Hardware

- Watec 902H2 ult. Computar HG2610AFCS-HSP F/1 2.6mm fl
- 902H2 ultimate (spectroscopy) Tamron 12VG412ASIR F/1.2, \(\approx\)7mm fl
- 2nd camera with transmission grating for spectroscopy
 Thorlabs 600 L/mm

![Visible Transmission Grating Test Data](image)
Starting point

- Camera with wide angle lens
- Transmission grating
 - mounted perpendicular to optical axis!
- Problem:
 - Moving meteor
 - Curved spectra with nonlinear dispersion
 - Cannot be stacked
Spectrograph, theory

- Video camera with transmission grating in front of lens
- Grating equation:
 \[m \cdot \lambda \cdot G = (\sin \alpha - \sin \beta) \cdot \cos \gamma \]
 - \(m \): grating order, \(G \): grating lines / mm
 - \(\lambda \): wavelength
 - \(\alpha, \beta \): angle of incidence, transmitted beam
 - \(\gamma \): cross, out of plane angle
- Inverse dispersion per pixel:
 \[\frac{d\lambda}{dx} = \frac{(\cos \beta \cos \gamma)}{(m \cdot G \cdot f) \cdot p} \]
 - Example: \(f = 7 \text{ mm}, p = 8.6 \mu\text{m}, G: 600\text{L/mm} \beta = 0 \rightarrow \frac{d\lambda}{dx} = 2.1\text{nm/pixel} \]
Vector theory wavelength calibration

- Grating in front of lens perpendicular to optical (z-)axis
- Unit vector (A B C) for incident direction
- Diffracted beam
 \[A' = A + m\lambda G \quad (x\text{-axis}) \]
 \[B' = B \quad (y\text{-axis}) \]
 \[C' = \sqrt{1 - A'^2 - B'^2} \]
- Spectrum on CCD plane
 - Nonlinear dispersion
 - Hyperbolic curvature
- Spectrum straight linear in A',B'
Gnomonic and orthographic projection

- **Gnomonic, TAN**
 - \(R = f \tan(\rho) \)
 - Great circles \(\rightarrow \) straight
 - Optimum for path, radiant
 - Latitude circles \(\rightarrow \) hyperbola

- **Orthographic, SIN**
 - \(R = f \sin(\rho) \)
 - Great circles \(\rightarrow \) ellipses
 - Latitude circles \(\rightarrow \) straight
 - Optimum for spectroscopy
Calibration spectrum HeNe laser

- HeNe laser $\lambda = 633$ nm, $f = 4$ mm, grating 300L/mm
- Fit with polynom $r = r' \times [1 + 3.94E^{-07}r'^2 + 2.01E^{-12}r'^4]$
- Fit center x_0, y_0

Composite spectra original

After applying transformation
Orthographic transformation, original
Orthographic transformation, result
Orthographic transformation, result

- Frames converted to b/w, linearized, registered, M20151127_222709

- color
Extraction of spectra
Full processing, using different software

- Image extraction with VirtualDub
- Preprocessing:
 - Background subtraction (IRIS)
 - Image transformation (ImageTools by Peter Schlatter)
 - Stacking of spectra (IRIS)
- Extract spectrum, calibrate wavelength (SpectraTools)
- (correction of instrument response, ISIS)
 - Grating efficiency
 - Camera spectral sensitivity (lens, CCD)
 - Atmospheric transmittance

Martin Dubs, Meteor Spectroscopy Bellinzona 2019
Preprocessing

- Extract image (i30)
- Background
 ADD_MEAN
 \(< I_1 \ldots I_{20} >\)
- Subtraction
 SUB2
Orthographic transformation, original
Orthographic transformation, result
Processing 2

- Register
 Add
 TRANS, ADD
 ib34-ib40

- Slant 28 30

- L_ADD

- L_PLOT
 save file.dat
Wavelength calibration

- Linear calibration with one or two known spectral lines, or zero order

![Graph showing spectral lines and calibration points](image)
Meteor spectrum processing

- Moving meteor requires special treatment of spectra
 - Nonlinear curved spectra, dispersion varies with meteor position
 - Linear spectra after orthographic transformation
 - Standard spectroscopy software only partially useful
 - Combination of different software required

- New approach: processing pipeline with Python script
 - One script for laser calibration → calibration parameters
 - One script for spectrum extraction
 video file → plot of wavelength calibrated meteor spectrum

- For info see: https://meteorspectroscopy.org/...meteor-spectraanalysed-with-python
Why Python

- it contains all the necessary tools to do the analysis
 - Image processing
 - Astronomical packages (FITS-format)
 - Fitting algorithms (peak positions, least square fit)
 - Plotting
- it finds widespread use in the astronomy community
- it is free
- it runs on different platforms
Laser calibration

- Script for least square fit of laser spectra
 - Set initial parameters
 - Load image
 - Mark different orders
 - Least square fit
 - Save results to *.ini file
Run calibration script, s_calib.py

- Mark laser lines:

- Fit equation:
 - Calculate in polar coordinates
 - Radial transformation to orthographic projection
 \[r = r' \times (1 + a3\times r'^2 + a5\times r'^4) \] (includes lens distortion)

- Results:
 - \(x_00, y_00\): coordinates of optical axis
 - \(\text{rot}\): angle of rotation of spectra
 - \(\text{disp}0\): dispersion [nm/pixel]
 - \(a3, a5\): radial transformation parameters
 - \(\text{rmsx}, \text{rmsy}\): fit errors
Calibration results

```
Watec 902 H2 ultimate, Tamron
calib/caladd9.txt
rms_x  =  0.3042
rms_y  =  0.4483
parameters after fit:
scalxy =   0.9200
x00    =  344.4033
y00    =  324.2399
rotdeg =  -0.3588
disp0   =   1.9928
a3     =  3.1525e-07
a5     = -3.2818e-13
Save config in directory [] n:
```
Meteor spectra processing with Python

- Processing pipeline:
 - Image extraction from video file
 - Preprocessing
 - Image transformation
 - Stacking (tilt, slant correction)
 - Wavelength calibration
 - Plotting, save data

- (_spectrum analysis)
 - Instrument response
 - Line intensities (Na, Mg, Fe- ratios)
Preprocessing with Python

- Before background subtraction with moonlight
- After background subtraction
Orthographic transformation, original
Orthographic transformation, result
Registering and stacking spectra

- Select 0 order for registering spectra
- Select range of rows for addition
Tilt and slant correction

- Tilt correction
- Slant correction
Extract raw spectrum

- Add lines \rightarrow 1d-spectrum, uncalibrated
Wavelength calibration

- Select known lines, assign wavelength (0 for zero order)
Calibrated spectrum

- After linear or polynomial fit → calibrated spectrum
Plot final spectrum

- Select range, set title etc.
Results

- See: http://www.meteorastronomie.ch/ergebnisse_spektroskopie.html
Outlook

- Instrument response, flat field
- Graphical user interface for Python
- Improve spectral resolution, HD-Video camera
Characteristic meteor spectra

- Catalogue of meteor spectra: V. Vojacek et. Al.

 http://adsabs.harvard.edu/abs/2015A%26A...580A..67V

Fig. 8. Classification of meteor spectra. The ternary graph of the Mg I (2), Na I (1), and Fe I (15) multiplet relative intensities. Every group of meteoroids is represented with a different symbol.

Fig. 5. Spectrum SX1837 of a bright Perseid. The meteor had a maximum brightness of \(\sim 2.2 \) mag. Because the spectra were oversaturated on the video frames around the brightness maximum, one frame of the sequence was chosen. The brightness of the meteor in this frame was \(\sim 7.5 \) mag.
Python meteor spectrum processing

- Python: https://www.python.org/
 (https://www.anaconda.com/download/#windows)
 https://repo.anaconda.com/archive/

- Spectrum processing manual short or detailed look at: https://meteorspectroscopy.org/welcome/documents/
 in the section Meteor Spectroscopy, manuals

- For more info, scripts and demo spectra contact the author for Dropbox link
Testrun m_pipe62.py

- Install Pyzo as programming environment
- Install Python from Anaconda
- Copy example from Dropbox\Python\s_calib.zip
- Copy example from Dropbox\Python\Python_demo.zip
- Setup working directory in Pyzo
- Run s-calib.py
- Run m_pipe62.py
 - m_set.ini
 - Directories: tmp, out
- Results, logfile
Install Pyzo

- http://www.pyzo.org/start.html
- See Meteor spectra Python manual_V6.pdf for details

To get started with Pyzo, you need to install the Pyzo IDE (in which you write your code) and a Python environment (in which you run your code).
Install Anaconda

- https://www.anaconda.com/download/
- Or better: download the version 5.2.0-windows-x86 from the Anaconda archive: https://repo.anaconda.com/archive/
 Select the 32 or 64 bit version, depending on your computer.
- Version 3.7 did not work with my script
- Install libraries: `conda install -c conda-forge lmfit`
Select working directory in Pyzo

- In Pyzo shell:
- Different configurations possible
Check configuration file

- Default: m_set.ini
- Edit if necessary
- Or run s_calib.py first
- [Lasercalib] start values for s_calib.py
- [Calib] parameters for m_pipe62.py

```
[[Lasercalib]
  f_lam0 = 405.0
  f_scalxy = 1.0
  b_fitxy = 1
  i_imx = 720
  i_imy = 576
  f_f0 = 8.0
  f_pix = 0.0086
  f_grat = 600.0
  f_rotdeg = 0.0
  i_binning = 1
  s_comment = Watec 902 H2 ultimate, Tamron12VG412ASIR, f - 8mm
  s_infile = calib\call190320\20190320call
  s_outfil = calib\call190320\190320call
  s_linefil = 1
  b_sqrt = 0

[Calib]
  scalxy = 0.9543847
  x00 = 355.5084
  y00 = 296.72482
  rot = 0.018813034
  disp0 = 2.0338101
  a3 = 1.557944e-07
  a5 = 2.499677e-13
```
Run example from Python Demo

- Input file: M181014/M20181014_023817_MA1_2 (.avi)
- Live demo, use shell ‘Python Demo’

```python
Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:32:41) on Windows (64 bits).
This is the Pyzo interpreter.
Type 'help' for help, type '?' for a list of *magic* commands.

>>> run m_pipe62.py
version m_pipe, m_pipelun 0.6.2 0.6.2
***-> path to configuration file: []:
dir.
Configuration m_set.ini read
 --> ['Lasercal', 'Calib', 'Fits']
[Lasercal]
 - [f_lam0] = 405.0
 - [f_scalxy] = 0.92
```
Result

- Calibrated spectrum
Conclusion

- Grating mounted perpendicular to camera axis
- Orthographic image transformation gives linear spectra!
- Python pipeline gives fast spectrum analysis
- Looking for low cost, sensitive, high resolution, high dynamic range video camera
Acknowledgment

- FMA (division of Swiss (Amateur) Astronomical Society) for data, discussion
- Koji Maeda (HD color videos)
- Giovanni Leidi for inspiration to use Python

Thank you!