

Meteor Spectroscopy, calibration

Martin Dubs, FMA, Switzerland

Koji Maeda, Nippon Meteor Society and University of Miyazaki, Japan

IMC 2016 June 2-5, Egmond - the Netherlands

Content

- Wavelength calibration, linearization of spectra
- Processing and extraction of meteor spectra
- Instrument response, flux calibration
- Conclusions

IMC 2016 June 2-5, Egmond - the Netherlands

Starting point

- Camera with wide angle lens
- Transmission grating
 - mounted perpendicular to optical axis!
- Problem:
 - Moving meteor
 - Curved spectra with nonlinear dispersion
 - Cannot be stacked

Vector notation, wavelength calibration*

- Grating perpendicular to optical (z-)axis, Rowland H. A. (1893),
- Unit vector (A B C) for incident direction

Fachgruppe Meteorastronomie

- Components of diffracted beam $A' = A + m\lambda G$ (x-axis) B' = B (y-axis) $C' = sqrt(1 - A^2 - B^2)$
- Spectrum on CCD plane
 - Nonlinear dispersion
 - Hyperbolic curvature
- Spectrum straight linear in A',B'
- Rotational symmetry of transformation correction of lens distortion

*Dubs, M. and Schlatter, P. (2015), A practical method for the analysis of meteor spectra, WGN, 43:4, p94

IMC 2016 June 2-5, Egmond - the Netherlands

Image transformation, original

Orthographic projection, result

IMC 2016 June 2-5, Egmond - the Netherlands

Extraction of spectra

Use of standard spectroscopy software to extract spectra

IMC 2016 June 2-5, Egmond - the Netherlands

Full processing

- Wavelength calibration $\sqrt{}$
- Flux calibration Correct for:
 - Background subtraction!
 - Vignetting, field of view
 - Correction for image transformation
 - o Apply image transformation
 - o Extract spectrum, calibrate wavelength
- Instrument response
 - Grating efficiency
 - Camera spectral sensitivity (lens, CCD)
 - Atmospheric transmittance

Martin Dubs, Koji Maeda, Meteor Spectroscopy, IMC 2016

flat field correction in pre-processing

– instrument response

Fachgruppe Meteorastronomie IMC 2016 June 2-5, Egmond - the Netherlands

Instrument response, theory

Grating efficiency, dependent on incidence angle: **α** = 15 -15° 0 (Gsolver V4.20b, http://www.gsolver.com/) grating 1st order transmission 600 L/mm inc dent 80% 70% п grating 60% efficiency 40% 30% alpha [°] 30% iffracted light -15 20% 10%

CCD efficiency: quantum efficiency from manufacturer

1100

- Convert to flux by dividing by wavelength (E = hc/λ)
- Atmospheric transmission: $Ta(\lambda) \approx exp[-\tau(\lambda)/cos(z)]$

700

wavelength [nm]

900

0%

300

500

IMC 2016 June 2-5, Egmond - the Netherlands

Measured reference spectrum

Venus spectrum

IMC 2016 June 2-5, Egmond - the Netherlands

Instrument response

- Spectrum of known object (Venus, Sirius)
 - $IR(\lambda)$ = measured spectrum(λ) / flux calibrated reference spectrum(λ)
- Meteor spectrum, wavelength calibrated \rightarrow flux calibrated spectrum
 - Flux calibrated spectrum(λ) = meteor spectrum(λ) / IR(λ)

Conclusion

- Grating mounted perpendicular to camera axis
- Image transformation gives linear spectra!
- Precise flux calibration depends on many factors, approximations used
- Looking for low cost, sensitive, high resolution, high dynamic range video camera
- Full format colour camera (e.g. Sony)Video camera (e.g. Watec)
 - + Color \rightarrow easy interpretation
 - + Orders can be separated
 - + High resolution
 - Bayer matrix lower sensitivity
 - Difficult to analyse (Instr. Resp.)

cost

- + High sensitivity
- + Spectral range
- + Low cost
- Small field of view or
- Low spectral resolution
- Overlapping orders

IMC 2016 June 2-5, Egmond - the Netherlands

Spectrum recording and processing software

- UFO Capture for trigger and record video (<u>http://sonotaco.com/e_index.html</u>)
- IRIS and ISIS (<u>http://www.astrosurf.com/buil/us/iris/iris.htm</u>) astronomical image processing and spectroscopy software
 - Both by Christian Buil
- ImageTools by Peter Schlatter (private communication)

Links

Linear calibration: <u>http://arxiv.org/abs/1509.07531</u> or <u>http://www.meteorastronomie.ch/images/Meteor_Spectroscopy_WGN</u> <u>43-4_2015.pdf</u>

Acknowledgment

- FMA (division of Swiss (Amateur) Astronomical Society) for data, discussion
 - Jonas Schenker, Roger Spinner (website, database)
 - Network of stations (Photo, Video, All sky fireball detection, Radio, Seismic), complementing Spectroscopy
 - Linked with EDMOND database
- Peter Schlatter (Image tools)

Thank you!